Probabilistic Graphical Models
Lectures 7,8



Questions

e What are all independence relations encoded by a Graphical Model?
e Which one is stronger? BNs or MRFs?
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Markov Property: Given X, is X, independent of X,.

Given X,, is X, independent of X,?
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Given X, and X,, is X, independent of the rest of the nodes?
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Perfect Map

The graph G is a Perfect Map for the joint distribution P if I(6) = I(P).



Causal Reasoning




Evidential Reasoning




Intercausal Reasoning
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Intercausal Reasoning
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What if there are more than 3 nodes?
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What if there are more than 3 nodes?
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Active tralil

Given a set of observed nodes in a Bayesian network, a route X,, X,, ..., X
between two nodes X, and X is an active trail if forall 1<i<n

n

o if X, X, X, isav-structure then X. or one of its descendants are
observed (known)
o if X, X, X  isnotav-structure, X. is not observed (is unknown).



d-separation

Two nodes X, Y in a Bayesian Network are d-separated if there is no active
trail between X,Y. => There is no route from X to Y through which the
influence can flow.

If XY are d-separeted given a set of observations S (subset of V) =>

Then, in the corresponding joint distribution X and Y are independent given S



Markov Independence => Factorization

Proved beforel



Factorization => Independence
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Factorization => Independence
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Markov Networks
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MRFs - Active trail

A route X, X,, .., X between X, and X is an active trail if forall 1<i<n, X.is
not observed (is unknown).



MRFs - Sepration

Two nodes X, Y in a Markov Network are separated if there is no active trail
between X)Y.

Remember the three types of Markov property (pariwise, local, and global).
The above is related to the Global Markov Property. We assume that the joint
distribution is strictly positive, thus the three properties are equivalent.



Which one is more general? MN or BN?
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BN as MRFs, Moralization
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BN as MRFs, Moralization
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BN as MRFs, Moralization
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BN as MRFs, Moralization
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BN as MRFs, Moralization
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Markov Blanket
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Markov Blanket - Markov Nets

Minimal Markov Blanket: Neighbours




Markov Blanket - Bayesian Nets

of o o



Markov Blanket - Bayesian Nets
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Markov Blanket - Bayesian Nets
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