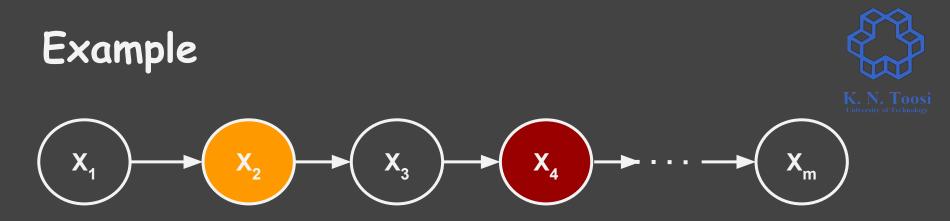
Probabilistic Graphical Models

Lectures 7,8

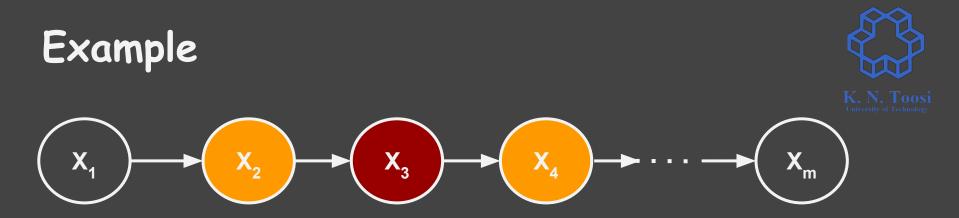
I-MAPs, Flow of influence, separation

- What are all independence relations encoded by a Graphical Model?
- Which one is stronger? BNs or MRFs?

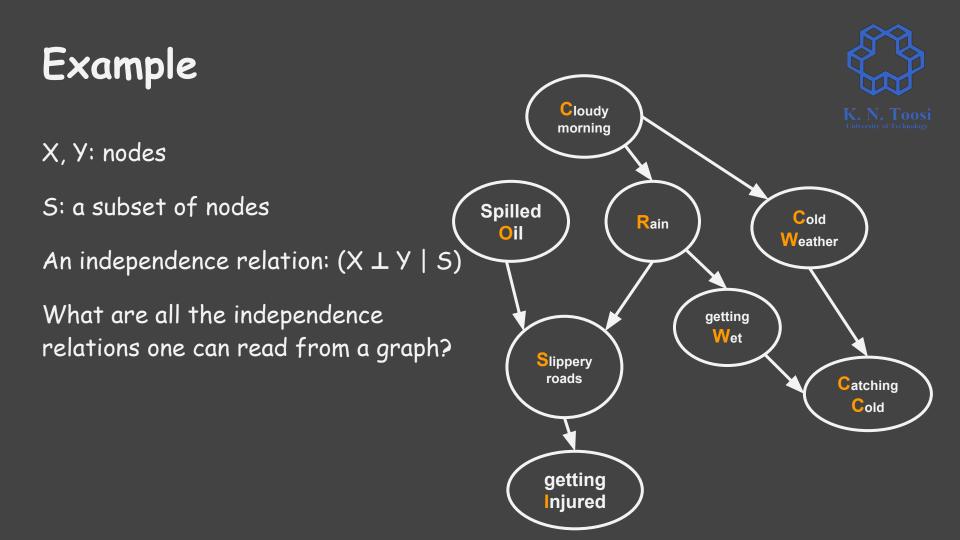


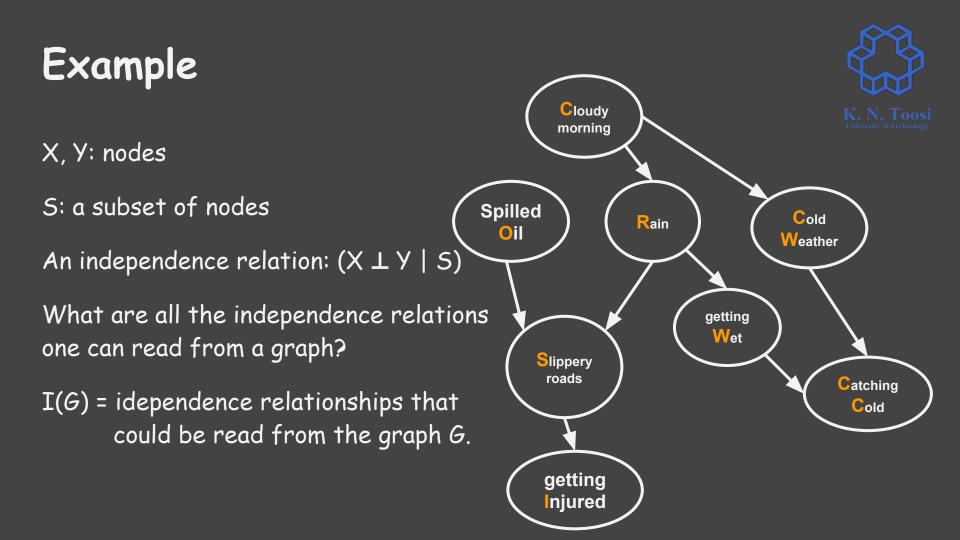
Markov Property: Given X_2 , is X_3 independent of X_1 .

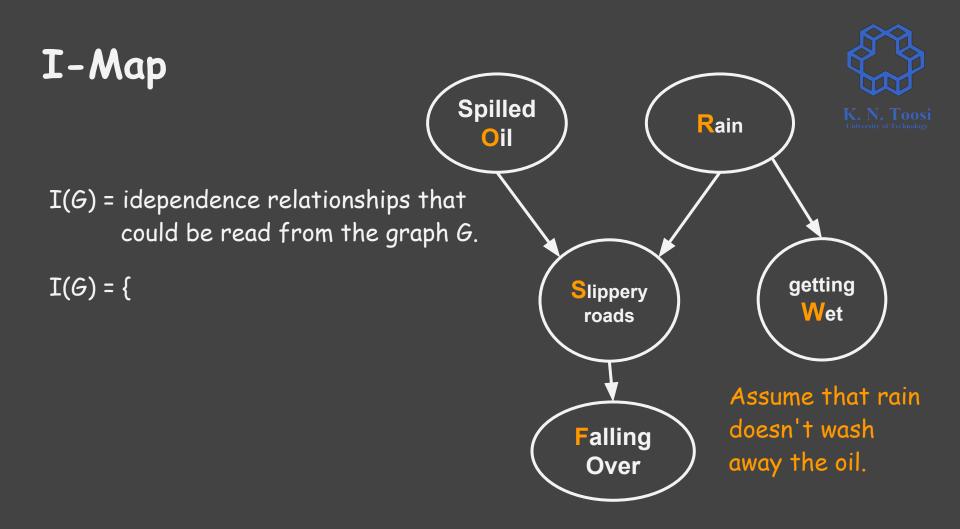
Given X_2 , is X_4 independent of X_1 ?

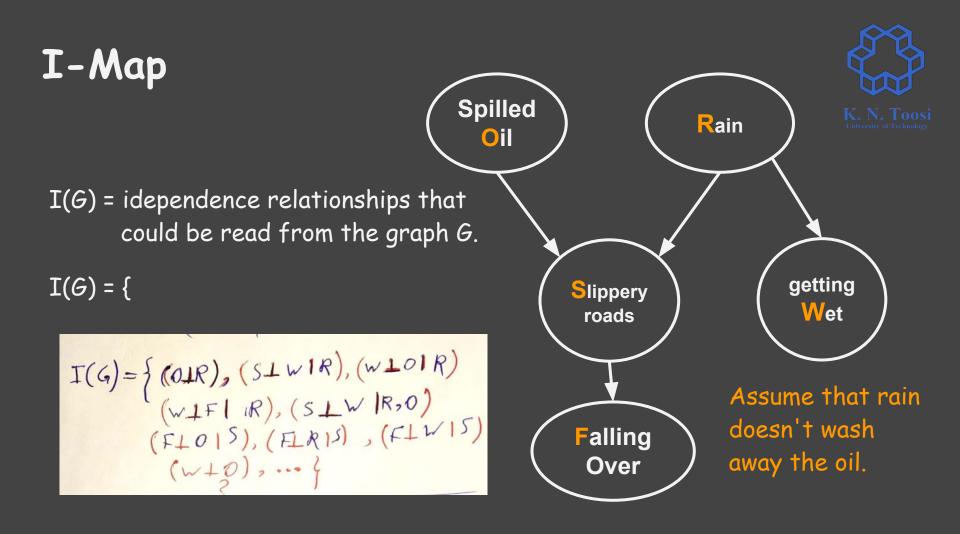


Given X_2 and X_4 , is X_3 independent of the rest of the nodes?









I-Map Spilled Rain Oil X, Y: nodes S: a subset of nodes $I(P) = \{ (X \perp Y \mid S) \mid P \vDash (X \perp Y \mid S) \}$ getting = independence relations the joint Slippery Wet roads distribution P satisfies. $P \models (S \perp W \mid R, 0) ?$ $P(S \mid R, 0, w) = \underbrace{\overline{z} P(R, 0, s, w; F)}_{S \neq P(R, 0, w, s, F)}$ $\underbrace{\overline{z} P(S \mid R, 0)}_{S \neq P(R, 0, w, s, F)}$ Assume that rain doesn't wash Falling away the oil. Over

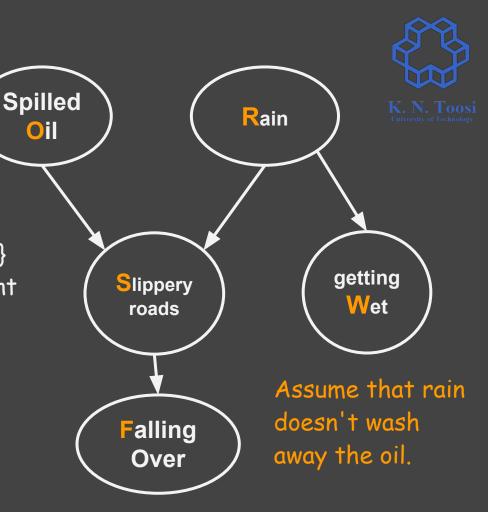
I-Map

X, Y: nodes

S: a subset of nodes

 $I(P) = \{ (X \perp Y \mid S) \mid P \models (X \perp Y \mid S) \}$

= independence relations the joint distribution P satisfies.



Example

$$P_{1}(X,Y) = P_{1}(X) P_{1}(Y)$$

$$= (\sum_{Y} P_{1}(X,Y)) (\sum_{Y} P_{1}(X,Y))$$

$$P_{2}(X,Y) \neq P_{2}(X) P_{1}(Y)$$

$$= (\sum_{Y} P_{1}(X,Y)) (\sum_{Y} P_{1}(X,Y))$$

$$I(P_{2}) = \{(X,Y)\}$$

$$I(P_{2}) = \{(X,Y)\}$$

$$P_{1}(X,Y) = P(X) P(Y)$$

$$I(G_{1}) = P(X) P(Y)$$

$$I(G_{2}) = P(X) P(Y)$$

$$P_{1}(X,Y) = P(X) P(Y)$$

$$P_{1}(X,Y) = P(X) P(Y)$$

$$P_{1}(X,Y) = P(X) P(Y)$$

$$P_{2}(X,Y) = P(X) P(Y)$$

$$P_{1}(X,Y) = P(X) P(Y)$$

$$P_{1}(X,Y) = P(X) P(Y)$$

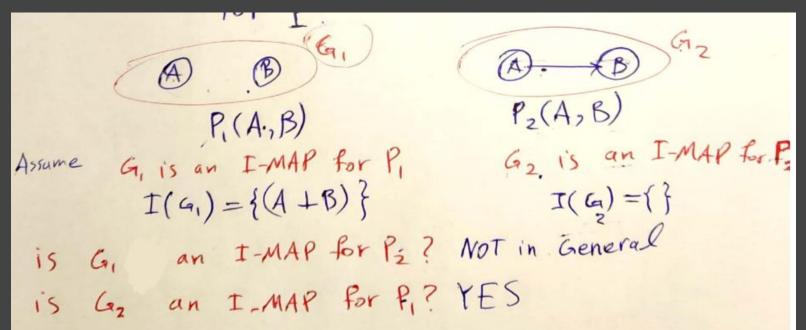
$$P_{2}(X,Y) = P(X) P(Y)$$

CS Scanned with CamScanner

I-Map

if G is a valid BN for P $I(G) \subseteq I(P) \Rightarrow G$ is an I-MAP for F. proved > P can be factorized over G (P can be written a the product of CPDs coming from Gi)

Example



Perfect Map

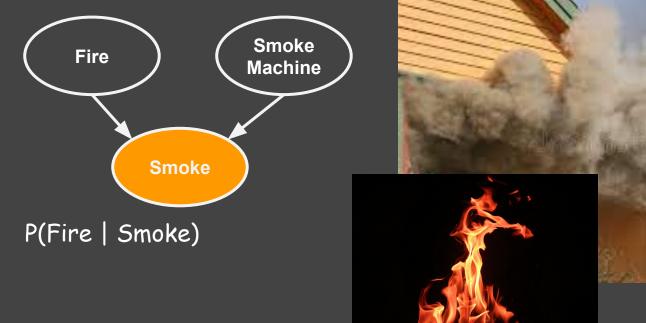
The graph G is a **Perfect Map** for the joint distribution P if I(G) = I(P).

Causal Reasoning

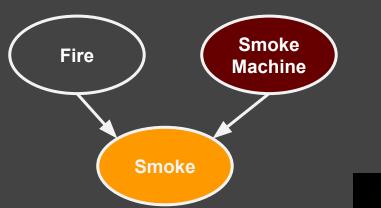
Evidential Reasoning



Intercausal Reasoning

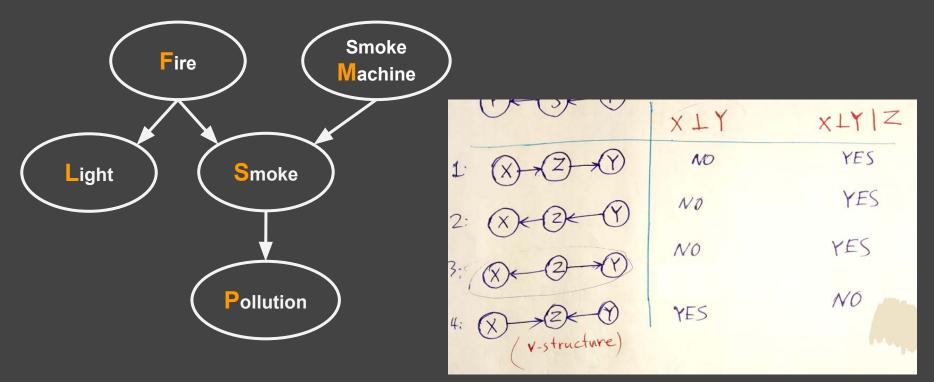


Intercausal Reasoning

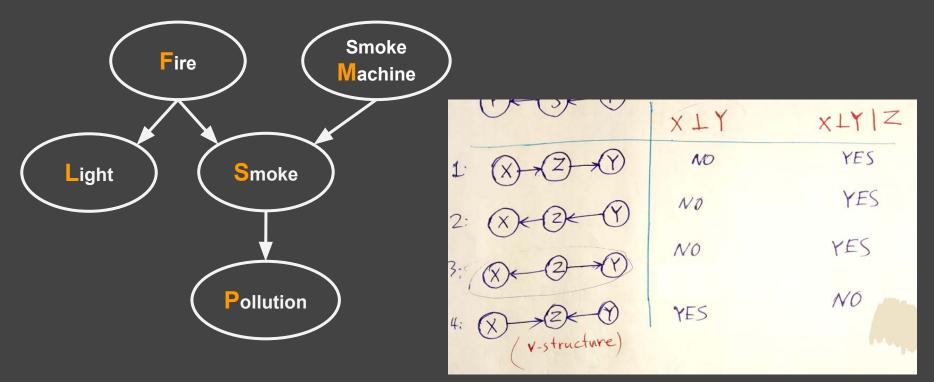


P(Fire=1 | Smoke=1, S-Machine=1) < P(Fire=1 | Smoke=1)

Flow of influence



Flow of influence

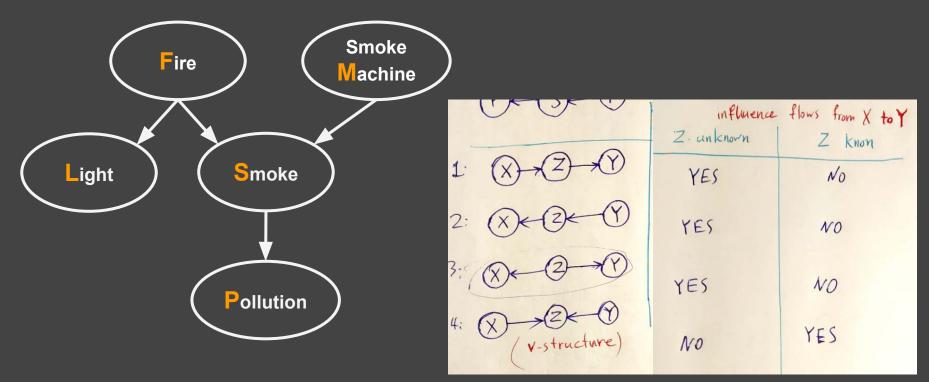


Example

3:
$$(x + (z) + (x) + (z)) = p(z) = p(z) p(x|z) p(y|z)$$

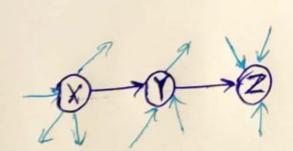
 $x \perp y \notin p(x, y, z) = \sum_{z} p(z) p(x|z) p(y|z)$
in general $\neq p(x) P(x)$
 $= (\sum_{y \neq z} p(x, y, z)) (\sum_{x \neq z} p)$
 $x \perp y|z ? P(x, y|z) = \frac{p(x, y, z)}{\sum_{x' \neq y'} p(x', y', z)} = \frac{p(x, y, z)}{p(z)}$
 $= \frac{p(z) p(x|z) p(y|z)}{p(z)} = p(x|z) p(y|z)$
 $= \sum_{x' \neq y'} p(x'|z) p(y|z)$

Flow of influence

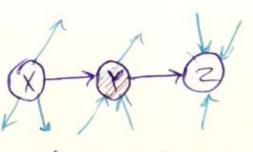


What if there are more than 3 nodes?

K. N. Toos



influence folows from X to Z (from X to Y to Z)



if Y is known influence cannot flow from X & Z through Y (but might flow from X to Z through other nodes)

What if there are more than 3 nodes?

Z or at least one g Z a is unknown and all its descendants are known are also unknown xthen influence flows from influence gets blocked X to OY through Z at Z may or may not flow from X to Y through other routes

Example

P(X)P(Y)P(Z|X,Y)P(T|Z) = P(X,Y,Z,T)if 2, T are unknown $P(X, k) \stackrel{?}{=} P(X)P(k)$ $P(x,t) = \sum_{x,T} P(x,t,z,T) = \sum_{x,T} P(x) P(t) P(z|x,t)$ P(T|z) $2 P(X)P(Y) \sum_{z} p(z|X,Y) \sum_{z} P(T|z)$ = P(X)P(Y)= P(X)P(Y) T is known = P(X,Y|T) = P(X|T) P(Y|T)' f(X,Y) $P(X, T|T) = \underbrace{\underbrace{\underbrace{P}(X, Y, T, 2)}_{P(T)} = \underbrace{\underbrace{P}(T)}_{P(T)} P(X) P(Y) \underbrace{\underbrace{P}(Z|X, T)}_{P(T|Z)} P(T|Z)$

Active trail

Given a set of observed nodes in a Bayesian network, a route $X_1, X_2, ..., X_n$ between two nodes X_1 and X_n is an active trail if for all 1 < i < n

- if X_{i-1}, X_i, X_{i+1} is a v-structure then X_i or one of its descendants are observed (known)
- if X_{i-1} , X_i , X_{i+1} is not a v-structure, X_i is not observed (is unknown).

d-separation

Two nodes X, Y in a Bayesian Network are d-separated if there is no active trail between X,Y. => There is no route from X to Y through which the influence can flow.

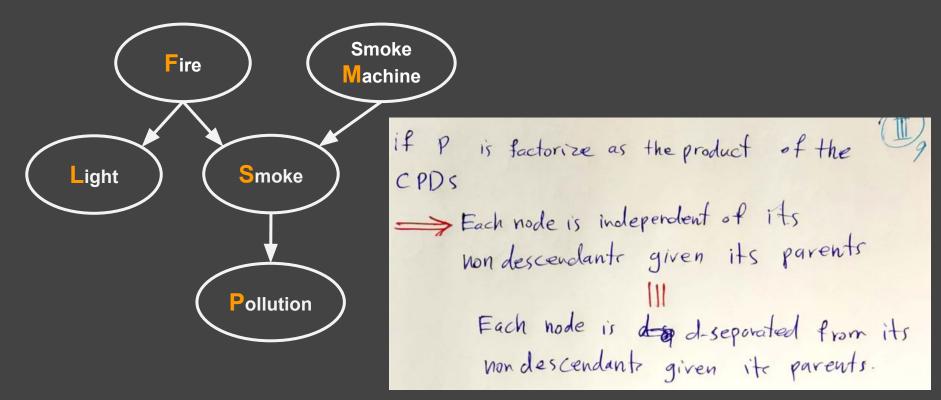
If X,Y are d-separeted given a set of observations S (subset of V) =>

Then, in the corresponding joint distribution X and Y are independent given S

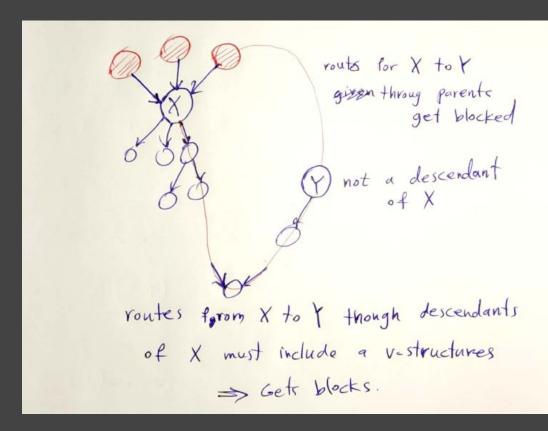
Markov Independence => Factorization

Proved before!

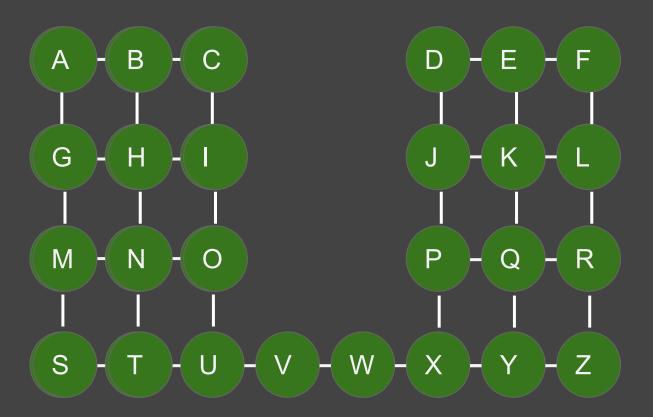
Factorization => Independence



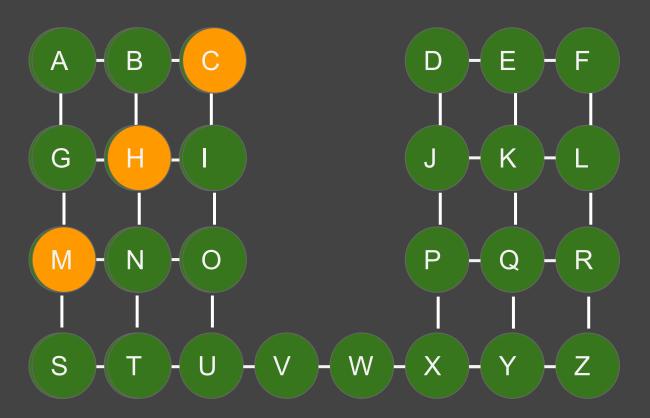
Factorization => Independence



Markov Networks



Markov Networks



MRFs - Active trail

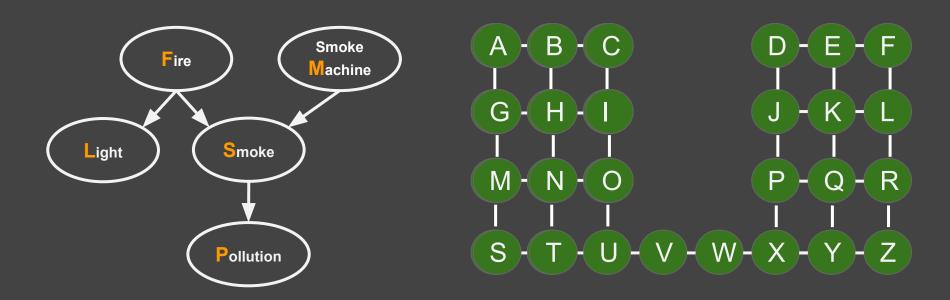
A route $X_1, X_2, ..., X_n$ between X_1 and X_n is an active trail if for all $1 < i < n, X_i$ is not observed (is unknown).

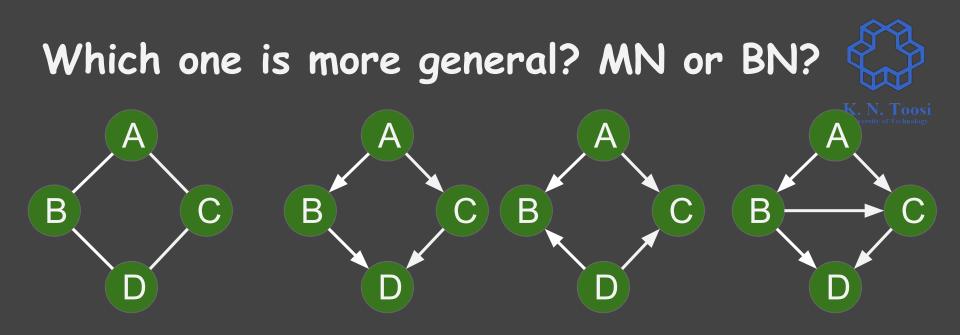
MRFs - Sepration

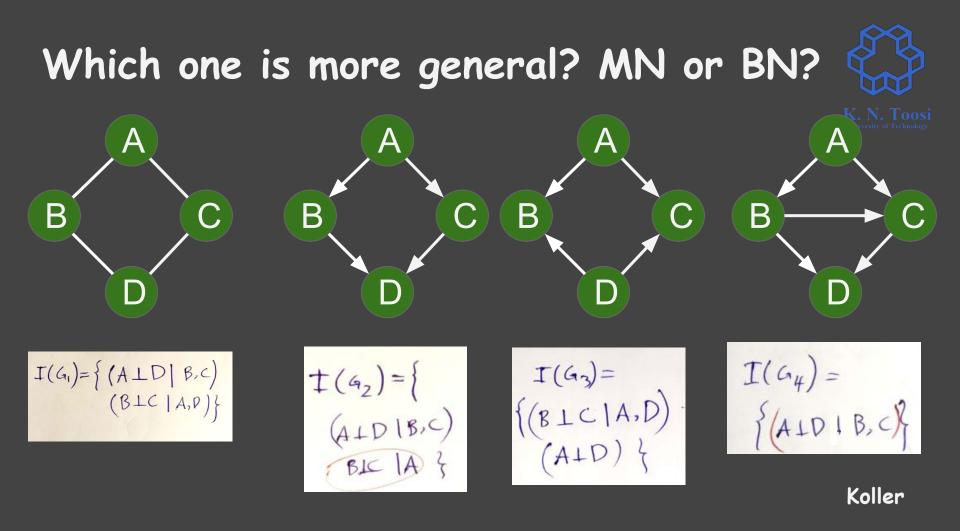
Two nodes X, Y in a Markov Network are **separated** if there is no active trail between X,Y.

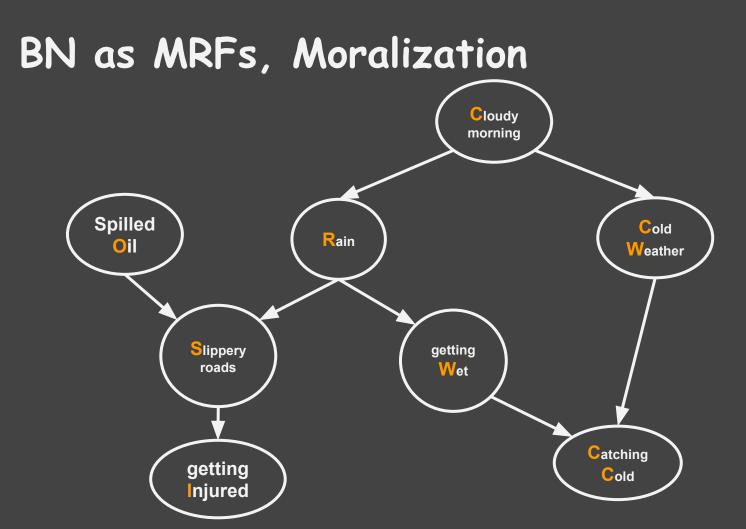
Remember the three types of Markov property (pariwise, local, and global). The above is related to the Global Markov Property. We assume that the joint distribution is strictly positive, thus the three properties are equivalent.

Which one is more general? MN or BN?

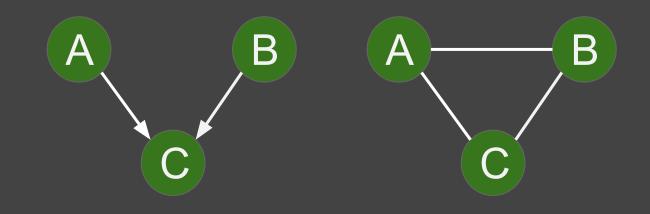


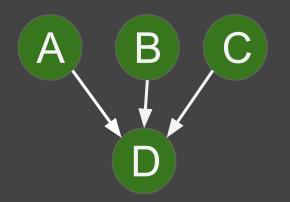


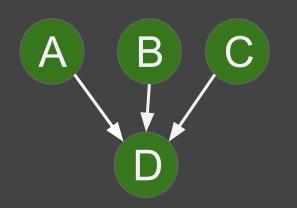


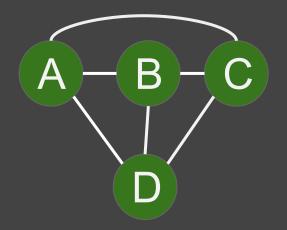


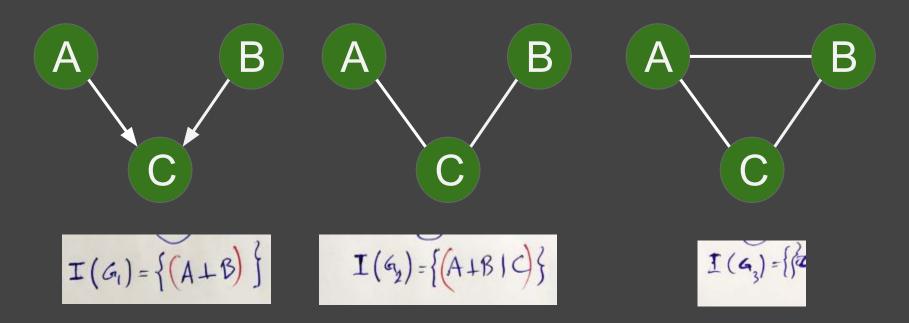
P(C, 0, R, Cw, ..., cc)= P(B, C) P(R, cw, 1c)P(CWIC) P(0) CW 0 R P(SIO, R) P(W(R) P(IIS) Ptecture W P(cc/w,cw) CC P(C, D, R, CW, ..., CC)= moralization $\Phi_1(c) \Phi_2(R,c)$ $\Phi_3(cw,c) \Phi_4(0)$ (in) 0 $\Phi_3(s,0,R) \Phi_8(w,R)$ $\Phi_7(I, S)$ $\Phi_{R}(cc,w,cw)$ CC











Markov Blanket

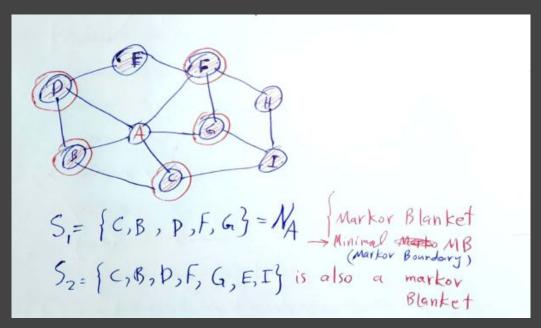
$$X = \{X_1, X_2, \dots, X_n\}$$

$$S \subseteq X \quad is \quad a \quad \text{Markor Blanket for } X_i$$

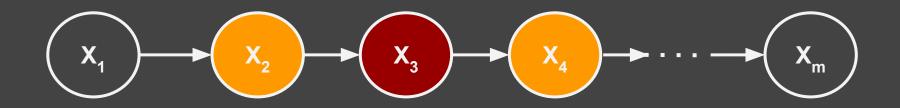
$$if \quad P(X_i \mid X \setminus X_i) = P(X_i \mid S)$$

Markov Blanket - Markov Nets

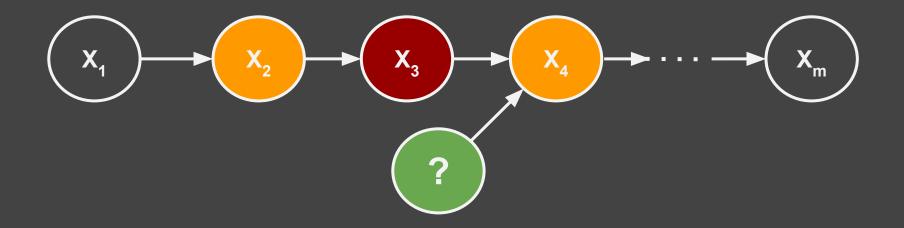
Minimal Markov Blanket: Neighbours



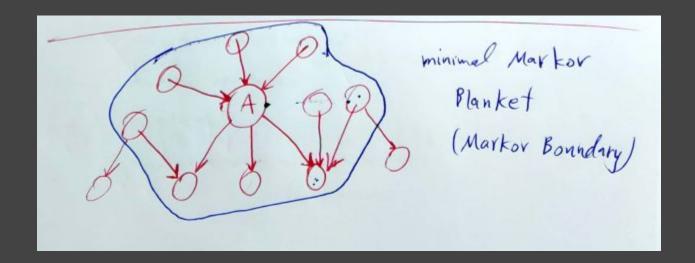
Markov Blanket - Bayesian Nets



Markov Blanket - Bayesian Nets



Markov Blanket - Bayesian Nets



Minimal Markov Blanket: Parents, Children, Parents of children